Section 15.3

Triple Integrals

Introduction
Applications and Physical Meaning
Fubini's Theorem and Iterated Integrals on
Rectangular Prisms
Simple Solids
Examples, Setting up the Integral
Example, When a Solid is not x-Simple
Example, Change of Order of Integration

1 Introduction

Triple Integrals

Triple integrals are analogous to double and single integrals.

Though difficult to visualize, the triple integral

$$
\iiint_{B} f(x, y, z) d V
$$

calculates the net amount of 4-dimensional space contained within the function f above the solid B.

$$
\iiint_{B} f(x, y, z) d V=\lim _{(L, M, N) \rightarrow(\infty, \infty, \infty)} \sum_{i=1}^{L} \sum_{j=1}^{M} \sum_{k=1}^{N} f\left(x_{i}, y_{j}, z_{k}\right) \Delta x \Delta y \Delta z
$$

Triple Integrals

Some concrete applications of triple integrals:

- Volume of a solid region $W=\iiint_{W} 1 d V$
- Average value of f on $W=\frac{\iiint_{W} f(x, y, z) d V}{\text { volume }(W)}$
- Total amount of "stuff" in $W=\iiint_{W} \delta(x, y, z) d V$ where $\delta(x, y, z)=$ density at point (x, y, z)

These applications occur frequently in physics and engineering problems.

Fubini's Theorem for Triple Integrals

If f is continuous on the rectangular box $B=[a, b] \times[c, d] \times[r, s]$, then

$$
\iiint_{B} f(x, y, z) d V=\int_{a}^{b} \int_{c}^{d} \int_{r}^{s} f(x, y, z) d z d y d x
$$

The iterated integral may be evaluated in any of the 6 possible orders.

Example 1: Let $B=[0,1] \times[-1,2] \times[0,3]$.

$$
\begin{aligned}
\iiint_{B} x y z^{2} d V & =\int_{0}^{3} \int_{-1}^{2} \int_{0}^{1} x y z^{2} d x d y d z \\
& =\int_{0}^{3} \int_{-1}^{2} \frac{y z^{2}}{2} d y d z \\
& =\int_{0}^{3} \frac{3 z^{2}}{4} d z=\frac{27}{4}
\end{aligned}
$$

2 Simple Solids

Triple Integrals on Simple Solids

A solid E is called \mathbf{z}-simple if the \mathbf{Z} coordinate is bounded by two continuous functions of x and y.

$$
\begin{aligned}
& D=\{(x, y) \mid(x, y, z) \in E\} \\
& E=\left\{(x, y, z) \left\lvert\, \begin{array}{l}
(x, y) \in D \\
u_{1}(x, y) \leq z \leq u_{2}(x, y)
\end{array}\right.\right\}
\end{aligned}
$$

$$
\iiint_{E} f(x, y, z) d V=\iint_{D}\left(\int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z\right) d A
$$

Calculating the inner integral produces a function of x and y. The triple integral then becomes a double integral.
E is a x-simple solid if the \mathbf{x} coordinate is bounded by two continuous functions of y, z.
D is the projection of E onto the $y z$-plane.

$$
\begin{gathered}
D=\{(y, z) \mid(x, y, z) \in E\} \\
E=\left\{(x, y, z) \left\lvert\, \begin{array}{l}
(y, z) \in D \\
u_{1}(y, z) \leq x \leq u_{2}(y, z)
\end{array}\right.\right\}
\end{gathered}
$$

E is a y-simple solid if the y coordinate is bounded by two continuous functions of
 x, z.
D is the projection of E onto the $x z$-plane.

$$
\begin{gathered}
D=\{(x, z) \mid(x, y, z) \in E\} \\
E=\left\{(x, y, z) \left\lvert\, \begin{array}{l}
(x, z) \in D, \\
u_{1}(x, z) \leq y \leq u_{2}(x, z)
\end{array}\right.\right\}
\end{gathered}
$$

Steps for Integration Set up

- Draw the the domain in \mathbb{R}^{3} (a solid).
- Decide if it is x, y or z-simple; solve the lower and the upper surface for x, y or z in terms of $(y, z),(x, z)$ or (x, y) respectively. Set up the most inner integral using those surfaces.
- If x, y or z-simple, find the projection of the domain in $y z, x z$ or $x y$ planes, respectively. Set up the two outer integral as a double integral over this region.

Example 2: Find the volume of E, where E is the solid tetrahedron bounded by the four planes $x=0, y=0, z=0$ and $x+y+z=1$.

Domain:

- Link

Projection of the domain on $x y$-plane

Solution: The solid can be viewed as an $x-, y$-, or z-simple solid.

Points (x, y, z) in E are such that

$$
0 \leq z \leq 1-x-y
$$

where $(x, y) \in D$ which is vertically simple:

$$
0 \leq y \leq 1-x \quad 0 \leq x \leq 1
$$

$$
\begin{aligned}
\text { Volume } & =\overbrace{\int_{0}^{1} \int_{0}^{1-x}}^{\text {Double Integral }} \int_{0}^{1-x-y} 1 d z d y d x \\
& =\int_{0}^{1} \int_{0}^{1-x} 1-x-y d y d x \\
& =\left.\int_{0}^{1}\left(y-x y-\frac{y^{2}}{2}\right)\right|_{0} ^{1-x} d x \\
& =\int_{0}^{1}(1-x)-x(1-x)-\frac{(1-x)^{2}}{2} d x=\frac{1}{6}
\end{aligned}
$$

Example 3: Let E be the solid bounded by the elliptical paraboloid $y=x^{2}+z^{2}$ and the plane $y=4$. Express

$$
\iiint_{E} f(x, y, z) d V
$$

as an iterated integral by viewing E as a z-simple solid.

Domain:

Projection of the Domain:

- A is the (vertically simple) projection of E onto the $x y$-plane.
- If (x, y, z) in E, then $-\sqrt{y-x^{2}} \leq z \leq \sqrt{y-x^{2}}$.

Solution:

$$
\int_{-2}^{2} \int_{x^{2}}^{4} \int_{-\sqrt{y-x^{2}}}^{\sqrt{y-x^{2}}} f(x, y, z) d z d y d x
$$

Example 4: Let E be the solid bounded by the elliptical paraboloid $y=x^{2}+z^{2}$ and the plane $y=4$. Express

$$
\iiint_{E} f(x, y, z) d V
$$

as an iterated integral by viewing E as a y-simple solid.

- B is the (vertically simple) projection of E onto the $x z$-plane.
- If (x, y, z) in E, then $x^{2}+z^{2} \leq y \leq 4$.

Solution:

$$
\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{x^{2}+z^{2}}^{4} f(x, y, z) d y d z d x
$$

Example 5: Find the volume of the solid E bounded by the surfaces

$$
x=y^{2}, \quad x=z, \quad z=0, \quad x=1 .
$$

Domain:

Solution: It is easiest to treat this solid as z -simple. It is defined by the inequalities

$$
-1 \leq y \leq 1, \quad y^{2} \leq x \leq 1, \quad 0 \leq z \leq x .
$$

Volume $=\iiint_{E} d V=\int_{-1}^{1} \int_{y^{2}}^{1} \int_{0}^{x} d z d x d y=\int_{-1}^{1} \int_{y^{2}}^{1} x d x d y$
$=\int_{-1}^{1} \frac{1-y^{4}}{2} d y=\frac{4}{5}$

Example 5 is not x-simple

View the $y z$-projection: Link Two surfaces $x=z$ and $x=y^{2}$ create a piecewise defined upper bound. Eliminate x between the two equations to find the projection of their intersection; $z=y^{2}$.

(A) The volume of the solid above A :

$$
\int_{-1}^{1} \int_{y^{2}}^{1} \int_{z}^{1} 1 d x d z d y
$$

(B) The volume of the solid above B :

$$
\int_{-1}^{1} \int_{0}^{y^{2}} \int_{y^{2}}^{1} 1 d x d z d y
$$

The volume of E is the sum of the two integrals.

Example 6: Rewrite the triple iterated integral

$$
\int_{0}^{2} \int_{0}^{4-y^{2}} \int_{0}^{2-y} f(x, y, z) d z d x d y
$$

in the order $d x d y d z$.
Solution: As always, start by sketching the region. The order of the limits of integration can be changed either algebraically or geometrically:

$$
\begin{array}{ll}
0 \leq y \leq 2 \\
0 \leq x \leq 4-y^{2} \\
0 \leq z \leq 2-y &
\end{array} \quad 0 \leq z \leq 2010 \leq y \leq 2-z .
$$

Answer: $\int_{0}^{2} \int_{0}^{2-z} \int_{0}^{4-y^{2}} f(x, y, z) d x d y d z$

More on Example 6: Represent the volume of the solid \mathcal{S} three different ways as an iterated triple integral, where \mathcal{S} is bounded by the surfaces

$$
y+z=2 \quad x=4-y^{2} \quad x=0 \quad y=0 \quad z=0
$$

Solution:

$$
\begin{aligned}
& \text { z-Simple: } \int_{0}^{2} \int_{0}^{4-y^{2}} \int_{0}^{2-y} f d z d x d y \\
& \text { x-Simple: } \int_{0}^{2} \int_{0}^{2-z} \int_{0}^{4-y^{2}} f d x d y d z
\end{aligned}
$$

Not y-Simple!

Example 7, Non-simple Region Setup

Example 7: Let W be the solid region inside the unit sphere $x^{2}+y^{2}+z^{2}=1$, above the plane $z=0$, and below the plane $z=y$. Set up a triple integral over W as an iterated integral.

Solution: The first step is to draw a picture of W. The projection of W into the x, y-plane is a half-disk:

$$
D=\left\{(x, y) \mid y \geq 0, x^{2}+y^{2} \leq 1\right\}
$$

Example 7

 (continued)$$
x^{2}+y^{2}+z^{2}=1
$$

The region W is not z-simple:

$$
W=\{(x, y, z) \mid(x, y) \in D, 0 \leq z \leq u(x, y)\}
$$

The upper bound $u(x, y)$ has to be defined piecewise.
The intersection of the plane $z=y$ and the sphere $x^{2}+y^{2}+z^{2}=1$ satisfies $x^{2}+2 y^{2}=1$. This is the boundary between the two pieces:

$$
u(x, y)= \begin{cases}y & \text { if } x^{2}+2 y^{2} \leq 1 \\ \sqrt{1-x^{2}-y^{2}} & \text { if } x^{2}+2 y^{2} \geq 1\end{cases}
$$

Example 7

 (continued)

Split up D into two subregions D_{1}, D_{2}. Each is z-simple:

$$
\begin{aligned}
& D_{1}=\left\{(x, y):-1 \leq x \leq 1,0 \leq y \leq \sqrt{\frac{1-x^{2}}{2}}\right\} \\
& D_{2}=\left\{(x, y):-1 \leq x \leq 1, \sqrt{\frac{1-x^{2}}{2}} \leq y \leq \sqrt{1-x^{2}}\right\} .
\end{aligned}
$$

Example 7

 (continued)

Putting the entire information together:

$$
\begin{aligned}
& \iiint_{W} f d V=\iint_{D_{1}}\left(\int_{0}^{y} f d z\right) d A+\iint_{D_{2}}\left(\int_{0}^{\sqrt{1-x^{2}-y^{2}}} f d z\right) d A \\
& =\int_{-1}^{1} \int_{0}^{\sqrt{\frac{1-x^{2}}{2}}} \int_{0}^{y} f d z d y d x+\int_{-1}^{1} \int_{\sqrt{\frac{1-x^{2}}{2}}}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} f d z d y d x .
\end{aligned}
$$

Example 7, Simple Regions Setup

This solid is both x-simple and y-simple:

$$
x \text {-simple setup: }
$$

$$
\iiint_{W} f d V=\int_{0}^{1} \int_{y}^{\sqrt{1-z^{2}}} \int_{-\sqrt{1-y^{2}-z^{2}}}^{\sqrt{1-y^{2}-z^{2}}} f d x d z d y
$$

y-simple Setup:

